Shannon Wavelet Precision Integration Method for Pathologic Onion Image Segmentation Based on Homotopy Perturbation Technology

Author:

Wang Haihua12,Mei Shu-Li12

Affiliation:

1. China Agricultural University, East Campus, Postbox 53, 17 Qinghua Donglu Road, Haidian District, Beijing 100083, China

2. College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China

Abstract

Image segmentation variational method is good at processing the images with blurry and complicated contours, which is useful in quality identification of pathologic picture of onion. An adaptive Shannon wavelet precise integration method (WPIM) on digital image segmentation was proposed based on the image processing variational model to improve the processing speed and eliminate the artifacts of the images. First, taking full advantage of the interpolation property of the Shannon wavelet function, a multiscale Shannon wavelet interpolation scheme was constructed based on the homotopy perturbation method (HPM). The image pixels of the Burkholderia cepacia (ex-Burkholder) infected onions were taken as the collocation points of the WPIM. Then, with this scheme, the image segmentation model (C-V model) can be discretized into a system of nonlinear ODEs and solved by the half-analytical scheme combining the HPM and the precision integration method. At last, the numerical precision and efficiency of WPIM were discussed and compared with other common segmentation methods such as OSTU method and Sobel operator. The results show that the contour curve of the segmentation object obtained by the new method has many excellent properties such as closed and clear topological structure and the artifacts can be eliminated.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Camouflaged locust segmentation based on PraNet;Computers and Electronics in Agriculture;2022-07

2. Haar wavelet transform and variational iteration method for fractional option pricing models;Mathematical Methods in the Applied Sciences;2022-05-04

3. Shannon-Cosine Wavelet Precise Integration Method for Locust Slice Image Mixed Denoising;Mathematical Problems in Engineering;2020-07-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3