Ozonation of Indigo Carmine Catalyzed with Fe-Pillared Clay

Author:

Bernal Miriam1,Romero Rubí1,Roa Gabriela1,Barrera-Díaz Carlos1,Torres-Blancas Teresa1,Natividad Reyna1ORCID

Affiliation:

1. Centro Conjunto de Investigación en Química Sustentable UAEMex-UNAM, Carretera Toluca Atlacomulco Km 14.5, 50200 Toluca, MEX, Mexico

Abstract

The ozonation catalyzed by iron-pillared clays was studied. The degradation of dye indigo carmine (IC) was elected as test reaction. Fe-pillared clays were synthesized by employing hydrolyzed FeCl3solutions and bentonite. The pillared structure was verified by XRD and by XPS the oxidation state of iron in the synthesized material was established to be +2. By atomic absorption the weight percentage of iron was determined to be 16. The reaction was conducted in a laboratory scale up-flow bubble column reactor. From the studied variables the best results were obtained with a particle size of 60 microns,pH=3, ozone flow of 0.045 L/min, and catalyst concentration of 100 mg/L. IC was completely degraded and degradation rate was found to be double when using Fe-PILCS than with ozone alone. DQO reduction was also significantly higher with catalyzed than with noncatalyzed ozonation.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3