Statistical Identification of Markov Chain on Trees

Author:

Xiang Xuyan123ORCID,Zhang Xiao2,Mo Xiaoyun4ORCID

Affiliation:

1. Hunan Province Cooperative Innovation Center for the Construction and Development of Dongting Lake Ecological Economic Zone, School of Mathematics and Computational Science, Hunan University of Arts and Science, Changde 415000, China

2. School of Mathematics and Statistics, Jishou University, Jishou 416000, China

3. HPCSIP, Ministry of Education of China, Hunan Normal University, Changsha 410081, China

4. School of Mathematics and Statistics, Hunan University of Finance and Economics, Changsha 410205, China

Abstract

The theoretical study of continuous-time homogeneous Markov chains is usually based on a natural assumption of a known transition rate matrix (TRM). However, the TRM of a Markov chain in realistic systems might be unknown and might even need to be identified by partially observable data. Thus, an issue on how to identify the TRM of the underlying Markov chain by partially observable information is derived from the great significance in applications. That is what we call the statistical identification of Markov chain. The Markov chain inversion approach has been derived for basic Markov chains by partial observation at few states. In the current letter, a more extensive class of Markov chain on trees is investigated. Firstly, a type of a more operable derivative constraint is developed. Then, it is shown that all Markov chains on trees can be identified only by such derivative constraints of univariate distributions of sojourn time and/or hitting time at a few states. A numerical example is included to demonstrate the correctness of the proposed algorithms.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3