PINN-CDR: A Neural Network-Based Simulation Tool for Convection-Diffusion-Reaction Systems

Author:

Hou Qingzhi1ORCID,Du Honghan2ORCID,Sun Zewei2ORCID,Wang Jianping3ORCID,Wang Xiaojing4ORCID,Wei Jianguo2ORCID

Affiliation:

1. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300350, China

2. College of Intelligence and Computing, Tianjin University, Tianjin 300350, China

3. Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China

4. School of Chemical Engineering, Tianjin University, Tianjin 300350, China

Abstract

In this paper, a discretization-free approach based on the physics-informed neural network (PINN) is proposed for solving the forward and inverse problems governed by the nonlinear convection-diffusion-reaction (CDR) systems. By embedding physical information described by the CDR system in the feedforward neural networks, PINN is trained to approximate the solution of the system without the need of labeled data. The good performance of PINN in solving the forward problem of the nonlinear CDR systems is verified by studying the problems of gas-solid adsorption and autocatalytic reacting flow. For CDR systems with different Péclet number, PINN can largely eliminate the numerical diffusion and unphysical oscillations in traditional numerical methods caused by high Péclet number. Meanwhile, the PINN framework is implemented to solve the inverse problem of nonlinear CDR systems and the results show that the unknown parameters can be effectively recognized even with high noisy data. It is concluded that the established PINN algorithm has good accuracy, convergence, and robustness for both the forward and inverse problems of CDR systems.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

Artificial Intelligence,Human-Computer Interaction,Theoretical Computer Science,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3