Osthole Inhibits M1 Macrophage Polarization and Attenuates Osteolysis in a Mouse Skull Model

Author:

Wang Feifei1,Yang Peiming2,Wan Tianhao3,Liu Cong1,Zhu Yujuan4,Chen Xuzhuo5ORCID,Liu Huanyan1ORCID

Affiliation:

1. The Affiliated Tai’an City Central Hospital of Qingdao University, Tai’an, 271000 Shandong Province, China

2. Department of Stomatology, Xuzhou Central Hospital, Xuzhou, 221000 Jiangsu Province, China

3. Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China

4. Department of Stomatology, Tai’an Second Hospital of Traditional Chinese Medicine, Tai’an, 271000 Shandong Province, China

5. Shanghai Key Laboratory of Stomatology, Department of Oral Surgery, Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Rd, Shanghai 200011, China

Abstract

Excessive bone resorption due to increased inflammatory factors is a common feature of inflammatory lytic bone diseases. This group of diseases is effectively treated with drugs. In recent years, many studies have reported that traditional Chinese medicine herbs have substantial effects on inflammation, osteoclast differentiation and maturation, and bone destruction. Herein, we investigated the effects of osthole (OST) on lipopolysaccharide- (LPS-) induced macrophage polarization, inflammatory responses, and osteolysis. In vitro, we used immunofluorescence and quantitative real-time polymerase chain reaction assays to confirm whether bone marrow-derived macrophages showed an increased expression of inflammatory factors, such as interleukin-6, iNOS, CCR7, and CD86, in the presence of LPS. However, we found that such expression was suppressed and that the M2 macrophage expression increased in the presence of OST. OST reduced LPS- and RANKL-induced intracellular reactive oxygen species production in the bone marrow-derived macrophages. Further, it potently suppressed osteoclast differentiation and osteoclast-specific gene expression by suppressing the P38/MAPK and NF-κB pathways. Consistent with the in vitro observations, OST greatly ameliorated LPS-induced bone resorption and modulated the ratio of macrophages at the site of osteolysis. Taken together, OST has great potential for use in the management of osteolytic diseases.

Funder

Shanghai Jiao Tong University

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3