An Overview of Pavement Degradation Prediction Models

Author:

Shtayat Amir1ORCID,Moridpour Sara1ORCID,Best Berthold2ORCID,Rumi Shahriar1

Affiliation:

1. Civil and Infrastructure Engineering Discipline, RMIT University, Melbourne, Australia

2. Faculty of Civil Engineering, Nuremberg Institute of Technology, Nuremberg, Germany

Abstract

Pavement management systems (PMSs) have a primary role in determining pavement condition monitoring and maintenance strategies. Moreover, many researchers have focused on pavement condition evaluation tools, starting with data collection, followed by processing, analyzing, and ultimately reaching practical conclusions regarding pavement condition. The analysis step is considered an essential part of the pavement condition evaluation process, as it focuses on the tools used to find the most accurate results. On the other hand, prediction models are important tools used in pavement condition evaluation to determine the current and future performance of the road pavement. Therefore, pavement condition prediction has an effective and significant role in identifying the appropriate maintenance techniques and treatment processes. Moreover, pavement performance indices are commonly used as key indicators to describe the condition of pavement surfaces and the level of pavement degradation. This paper systematically summarizes the existing performance prediction models conducted to predict the condition of asphalt pavement degradation using pavement condition indexes (PCI) and the international roughness index (IRI). These performance indices are commonly used in pavement monitoring to accurately evaluate the health status of pavement. The paper also identifies and summarizes the most influencing parameters in road pavement condition prediction models and presents the strength and weaknesses of each prediction model. The findings show that most previous studies preferred machine learning approaches and artificial neural networks forecasting and estimating the road pavement conditions because of their ability to deal with massive data, their higher accuracy, and them being worthwhile in solving time-series problems.

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Reference68 articles.

1. Dynamic monitoring of asphalt pavement using mobile application;A. Shtayat

2. A review of monitoring systems of pavement condition in paved and unpaved roads

3. Using e-bikes and private cars in dynamic road pavement monitoring

4. Using e-bikes and private cars in dynamic road pavement monitoring

5. Prediction of Pavement Condition and Maintenance and Rehabilitation Action Using Artificial Neural Network and Expert System;F. MoghadasNejad

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3