Application of Reverse Time Migration to Faults Imaging in Rakhine Basin, Myanmar

Author:

Jang Seonghyung12ORCID,Lee Donghoon1ORCID

Affiliation:

1. Petroleum and Marine Division, Korea Institute of Geoscience and Mineral Resources, 124 Gwahang–no, Yuseong–gu, Daejeon 34132, Republic of Korea

2. Petroleum Resources Technology, University of Science and Technology, 217 Gajeong–no, Yuseong–gu, Daejeon 34113, Republic of Korea

Abstract

The Rakhine Basin in the northeastern Bay of Bengal is an active field in hydrocarbon exploration and development. It contains fault structures and steeply sloping stratigraphic reservoirs, both primary features of interest for hydrocarbon exploration that needs to be accurately imaged to improve the interpretation of seismic data and facilitate the accurate identification of features of interest. Although faults are an indicator of possible hydrocarbon traps, they are difficult to identify in seismic images using traditional stack or prestack time migration due to the rather complex behaviors of wave propagation. On the other hand, prestack depth migration (PSDM) can significantly improve the accuracy of seismic images, especially of complex subsurface structures such as faults, folds, overthrusts, and salt domes. Among the various PSDM approaches, reverse time migration (RTM) has been shown to be the most powerful. Here, we show how PSDM-RTM can significantly improve the representation of fault structures and steeply dipping structures in seismic images from field data collected in Rakhine Basin, which is characterized by complex geology including stratigraphic and strati-structural traps as well as complex channel systems. Typically, these structures appear heavily blurred and are difficult to identify using normal stack and prestack time migration. We demonstrate that they become clearer and easier to detect with the PSDM–RTM approach, making this approach particularly suitable for seismic interpretations of geologically complex areas within the context of hydrocarbon prospecting.

Funder

Ministry of Trade, Industry and Energy

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Reference42 articles.

1. Structural framework and deep-marine depositional environments of Miocene-Pleistocene sequence in western offshore Myanmar;M. Jain

2. Exploration of the Rakhine Basin, pushing out the barriers with new 3D;D. Cliff

3. Tutorial: migration imaging conditions

4. Reverse time migration

5. Reversed time migration in spatial frequency domain

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3