Athletes’ State Monitoring under Data Mining and Random Forest

Author:

Li Xiaolei1ORCID

Affiliation:

1. Physical Education Department of Public Basic Education Department, Henan Vocational University of Science and Technology, Zhoukou, Henan 466000, China

Abstract

The study aims to train athletes to be in top form and at their best in the competition. Based on the relevant theoretical research, archers are taken as the research subjects, the characteristics of archery are analyzed, and the electroencephalogram (EEG) features of the athletes in different stages of precompetition training are monitored. And the athletes’ competitive state monitoring model based on random forest (RF) is implemented and tested. The experimental results show that the athletes’ dominant frequency of brain band α, EEG entropy, central fatigue index, excitation inhibition index, and cerebral state index in precompetition training is significantly different from those in training ( P < 0.05 ).The monitoring model implemented classifies athletes’ competitive states. Compared with the support vector machine (SVM) classification model, its classification accuracy is higher than 90%. The overall classification accuracy is 89.74%, more significant than SVM. The research provides a reference for monitoring athletes’ competitive states and helps them regulate their states in real time.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3