Durability of Marine Concretes with Nanoparticles under Combined Action of Bending Load and Salt Spray Erosion

Author:

Maohua Zhang1ORCID,Zhengyi Lv1,Jiyin Cui1,Zenong Tian1,Zhiyi Li1

Affiliation:

1. School of Civil Engineering, Northeast Forestry University, Harbin 150040, China

Abstract

The coupling effect of bending load and salt spray erosion during the service of a sea-crossing bridge accelerates the deterioration and durability of concrete and dramatically reduces the load-carrying capacity of the bridge. The effects of nanoparticles on the durability of marine concrete exposed to bending loads and salt spray erosion were studied. In this paper, nano-SiO2 and nano-Fe2O3 were mixed into plain concrete. Free chloride ions (Cl−) were titrated at different concrete depths using a four-point loading device and a self-developed salt spray erosion test chamber. Test results showed that chloride ion levels in the tensile and compressive zones for both nanoconcretes were lower than plain concrete at the same timepoint. The optimal mixtures of the two nanoparticles were 2% and 1%, and the improvement of nano-SiO2 was more significant than nano-Fe2O3. Due to the special properties of nanomaterials, they effectively improved the microstructure of concrete and the composition of cement hydration products. This allowed concrete to become more compact, reduced crack generation, increased the difficulty of Cl− migration inside the concrete, and improved the overall durability of marine concrete upon exposure to bending loads and salt spray erosion.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3