RP-18 HPLC Analysis of Drugs’ Ability to Cross the Blood-Brain Barrier

Author:

Sobańska Anna W.1ORCID,Hekner Adam1ORCID,Brzezińska Elżbieta1ORCID

Affiliation:

1. Department of Analytical Chemistry, Faculty of Pharmacy, Medical University of Lodz, Ul. Muszyńskiego 1, 90-151 Łódź, Poland

Abstract

One hundred ten compounds of diverse structures (actives and excipients used in pharmaceutical preparations) were studied by RP-18 HPLC with acetonitrile-pH 7.4 phosphate buffer 1 : 1 (v/v) as the mobile phase. The relationships between the BBB permeation coefficients and the chromatographic parameters log k and (log k)/PSA were compared to those between the blood-brain barrier (BBB) permeation parameters and the RP-18 TLC descriptors Rf and Rf/PSA known from our earlier studies. It was found that the correlations between the BBB permeability and the HPLC data are slightly worse than those achieved for the thin-layer chromatographic data. MLR analysis based upon the physicochemical data confirmed the value of the molecular descriptors, related to the CNS bioavailability. These variables, combined with the HPLC data, made it possible to generate computational models, explaining 70–96% of the total variance of the CNS bioavailability. Contrary to TLC Rf, the advantage of the modification of HPLC log k with PSA (polar surface area) has not been confirmed and the results obtained with log k are superior to those obtained after a novel (log k)/PSA parameter has been introduced. Establishing a firm threshold limit of (log k)/PSA, log k, or even k and k/PSA to distinguish between the CNS+ and CNS− compounds was impossible. On the other hand, discriminant function analyses involving log k and (log k)/PSA as discriminating variables separated the CNS+ and CNS− compounds with the success rate ca. 90%. On the basis of these results, it was concluded that the RP-18 HPLC analytical models are entirely successful in studies and predictions of the BBB permeability.

Funder

Uniwersytet Medyczny w Lodzi

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3