A Highly Effective Data Preprocessing in Side-Channel Attack Using Empirical Mode Decomposition

Author:

Zhang ShuaiWei12ORCID,Yang XiaoYuan1ORCID,Chen Lin1,Zhong Weidong1

Affiliation:

1. Key Laboratory of Network and Information Security Under the People’s Armed Police, Engineering University of People’s Armed Police, Xi’an 710086, China

2. Academy of People’s Armed Police, Beijing 100012, China

Abstract

Side-channel attacks on cryptographic chips in embedded systems have been attracting considerable interest from the field of information security in recent years. Many research studies have contributed to improve the side-channel attack efficiency, in which most of the works assume the noise of the encryption signal has a linear stable Gaussian distribution. However, their performances of noise reduction were moderate. Thus, in this paper, we describe a highly effective data-preprocessing technique for noise reduction based on empirical mode decomposition (EMD) and demonstrate its application for a side-channel attack. EMD is a time-frequency analysis method for nonlinear unstable signal processing, which requires no prior knowledge about the cryptographic chip. During the procedure of data preprocessing, the collected traces will be self-adaptably decomposed into sum of several intrinsic mode functions (IMF) based on their own characteristics. And then, meaningful IMF will be reorganized to reduce its noise and increase the efficiency of key recovering through correlation power analysis attack. This technique decreases the total number of traces for key recovering by 17.7%, compared to traditional attack methods, which is verified by attack efficiency analysis of the SM4 block cipher algorithm on the FPGA power consumption analysis platform.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3