A Sparse CoSaMP Channel Estimation Algorithm With Adaptive Variable Step Size for an OFDM System

Author:

Xiaoling Ning1ORCID,Yangyi Chen2,Linsen Zhang1

Affiliation:

1. College of Weaponry Engineering, Naval University of Engineering, Wuhan 430033, China

2. Group 27 of the Ninth Cadet Brigade, Naval University of Engineering, Wuhan 430033, China

Abstract

Compressive sampling matching pursuit (CoSaMP), as a conventional algorithm requiring system sparsity and sensitive to step size, was improved in this paper by approximating the sparsity with adaptive variable step size. In the proposed algorithm (CoSaMP with variable step size abbreviated as Vss-CoSaMP), the idea of approximating sparsity with adaptive step size was borrowed from the sparsity adaptive matching pursuit (SAMP) algorithm to determine the sparsity for the CoSaMP algorithm. The applicability of the CoSaMP algorithm was therefore expanded considerably. On this basis, a step size reduction was added as the iteration termination condition of an orthogonal frequency division multiplexing (OFDM) system. An adaptive variable step size algorithm was then put forward to address the CoSaMP algorithm’s sensitivity to step size. It could realize the required precision at different initial step sizes. A simulation was carried out to analyze the influence of pilot number and step size in an OFDM system on the algorithm. The algorithms, including SAMP, CoSaMP, and Vss-CoSaMP, were compared with two sparse channels, revealing that the Vss-CoSaMP algorithm overcame the problem of the CoSaMP algorithm, that is, the impossibility to forecast the channel sparsity. With the adaptive step size, the proposed algorithm could reach and achieve better accuracy than the CoSaMP algorithm. Additionally, the proposed algorithm was superior over the SAMP algorithm in terms of reconstruction, mean square error (MSE), and bit error ratio (BER).

Funder

Naval University of Engineering

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3