Feasibility Study of a Novel Modal Decomposition Method for Low-Frequency Structure with Nonproportionally Distributed Rate-Independent Linear Damping

Author:

Liu Wei12ORCID,Ni Yi-Qing1ORCID,Ao Wai Kei1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China

2. International Research Institute of Disaster Science, Tohoku University, Sendai 980-8572, Japan

Abstract

Compared with conventional linear viscous damping (LVD), rate-independent linear damping (RILD) mitigates floor response acceleration in low-frequency structures more effectively without compromising the control performance of displacement responses during long-period or low-frequency earthquakes. Although theoretical and experimental attempts have been made to overcome the noncausality of RILD devices and realize RILD using passive or semiactive devices, only a few studies have highlighted the impulse-response precursor and modal analysis method of multistory structures incorporated into RILD devices. This study investigated the impulse-response precursor of a noncausal RILD system and proposed a novel modal decomposition method for the structures equipped with nonproportionally distributed RILD devices. Additionally, real-time hybrid simulation was conducted to validate the effectiveness of the proposed modal analysis method and the feasibility of realizing ideal RILD using mechanical devices. This study is the first to demonstrate the differences between RILD and LVD devices in terms of controlling the modal responses of low-frequency structures and how RILD can lower the floor response acceleration more effectively compared to LVD.

Funder

Hong Kong Polytechnic University

Publisher

Hindawi Limited

Subject

Mechanics of Materials,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3