A Triplet Multimodel Transfer Learning Network for Speech Disorder Screening of Parkinson’s Disease

Author:

Zhao Aite1ORCID,Wang Nana1ORCID,Niu Xuesen1ORCID,Chen Ming1ORCID,Wu Huimin1ORCID

Affiliation:

1. College of Computer Science and Technology, Qingdao University, Qingdao, China

Abstract

Deterioration in the quality of a person’s voice and speech is an early sign of Parkinson’s disease (PD). Although a number of computer-based methods have been invested to use patients’ speech for early diagnosis of Parkinson’s disease, they only focus on a fixed pronunciation test, such as the subjects’ monosyllabic pronunciation is analyzed to determine whether they have potential possibility of PD. Moreover, only using traditional speech analysis methods to extract single-view speech features cannot provide a comprehensive feature representation. This paper is dedicated to the study of various pronunciation tests for patients with PD, including the pronunciation of five monosyllabic vowels and a spontaneous dialogue. A triplet multimodel transfer learning network is designed and proposed for identifying subjects with PD in these two groups of tests. First, multisource data extract mel frequency cepstrum coefficient (MFCC) features of speech for preprocessing. Subsequently, a pretrained triplet model represents features from three dimensions as the upstream task of the transfer learning framework. Finally, the pretrained model is reconstructed as a novel model that integrates the triplet model, temporal model, and auxiliary layer as the downstream task, and weights are updated through fine-tuning to identify abnormal speech. Experimental results show that the highest PD detection rates in the two groups of tests are 99% and 90% , respectively, which outperform a large number of internationally popular pattern recognition algorithms and serve as a baseline for other academic researchers in this field.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Reference51 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3