Pentoxifylline Attenuates Methionine- and Choline-Deficient-Diet-Induced Steatohepatitis by Suppressing TNF-αExpression and Endoplasmic Reticulum Stress

Author:

Chae Min Kyung1,Park Sang Gyu23,Song Sun-Ok1,Kang Eun Seok1,Cha Bong Soo1,Lee Hyun Chul1,Lee Byung-Wan1

Affiliation:

1. Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea

2. College of Biomedical Sciences, CHA University, Seongnam 463-836, Republic of Korea

3. Advanced Institutes of Convergence Technology (AICT), Seoul National University, Suwon 443-270, Republic of Korea

Abstract

Background. Pentoxifylline (PTX) anti-TNF properties are known to exert hepatoprotective effects in various liver injury models. The aim of this study was to investigate whether PTX has beneficial roles in the development of methionine- and choline-deficient-(MCD-) diet-induced NAFLD SD ratsin vivoand TNF-α-induced Hep3B cellsin vitro.Methods. SD Rats were classified according to diet (chow or MCD diet) and treatment (normal saline or PTX injection) over a period of 4 weeks: group I (chow + saline,n=4), group II (chow + PTX), group III (MCD + saline), and group IV (MCD + PTX). Hep3B cells were treated with 100 ng/ml TNF-α(24 h) in the absence or presence of PTX (1 mM).Results. PTX attenuated MCD-diet-induced serum ALT levels and hepatic steatosis. In real-time PCR and western blotting analysis, PTX decreased MCD-diet-induced TNF-alpha mRNA expression and proapoptotic unfolded protein response by ER stress (GRP78, p-eIF2, ATF4, IRE1α, CHOP, and p-JNK activation)in vivo. PTX (1 mM) reduced TNF-α-induced activation of GRP78, p-eIF2, ATF4, IRE1α, and CHOPin vitro.Conclusion. PTX has beneficial roles in the development of MCD-diet-induced steatohepatitis through partial suppression of TNF-αand ER stress.

Funder

National Research Foundation of Korea

Publisher

Hindawi Limited

Subject

General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3