Sensing and Identification of Nonlinear Dynamics of Slider with Clearance in Sub-5 Nanometer Regime

Author:

Sheng Gang1

Affiliation:

1. Department of Mechanical Engineering, University of Alaska, Fairbanks, AK 99775, USA

Abstract

This paper provides an overview of the problems pertaining to the sensing and identification of nonlinear dynamics of slider with clearance in sub-5 nanometer regime. This problem is complex in nature because the nonlinear dynamics of slider in sub-5 nanometer clearance regime involves different sources of nonlinear, nonstationary, and uncertainty characteristics. For example, the involved forces such as air-bearing force, intermolecular force, and contact forces are all nonlinear. The complex interface interaction with mobile lubricant makes the slider response be nonstationary. Furthermore, the interfacial parameters are available only by assumptions in the sense of statistics. Most of the reported studies either focused on physics-based simulations by using assumed interfacial parameters or focused on experimental characterization. The issues of the sensing and identification of the nonlinear dynamic properties of slider in nanometer clearance regime will be discussed with an aim at illustrating the promising approaches for improving the correlation between test data and physics-based simulations.

Publisher

Hindawi Limited

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Friction and Contact of Solid Interfaces;Dynamics and Control of Robotic Manipulators with Contact and Friction;2018-11-19

2. Friction–vibration interactions and applications in computer hard disk drive system;Handbook of Friction-Vibration Interactions;2014

3. Fundamentals of contact mechanics and friction;Handbook of Friction-Vibration Interactions;2014

4. Feedforward stability control of active slider in sub-nanometer spacing regime;Microsystem Technologies;2013-06-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3