New Wavelets Collocation Method for Solving Second-Order Multipoint Boundary Value Problems Using Chebyshev Polynomials of Third and Fourth Kinds

Author:

Abd-Elhameed W. M.12ORCID,Doha E. H.2,Youssri Y. H.2ORCID

Affiliation:

1. Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia

2. Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt

Abstract

This paper is concerned with introducing two wavelets collocation algorithms for solving linear and nonlinear multipoint boundary value problems. The principal idea for obtaining spectral numerical solutions for such equations is employing third- and fourth-kind Chebyshev wavelets along with the spectral collocation method to transform the differential equation with its boundary conditions to a system of linear or nonlinear algebraic equations in the unknown expansion coefficients which can be efficiently solved. Convergence analysis and some specific numerical examples are discussed to demonstrate the validity and applicability of the proposed algorithms. The obtained numerical results are comparing favorably with the analytical known solutions.

Publisher

Hindawi Limited

Subject

Applied Mathematics,Analysis

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3