An Automatic Pronunciation Error Detection and Correction Mechanism in English Teaching Based on an Improved Random Forest Model

Author:

Dai Yuhua1ORCID

Affiliation:

1. Foreign Language School, Huanghe Science and Technology College, Zhengzhou City 450005, China

Abstract

Teachers in traditional English classes focus more on writing and grammar instruction, while oral language instruction is neglected. In exam-oriented education, most Chinese students can master English written test skills, but only a few students can communicate effectively in English daily. People are progressively realizing that language is a tool for communication and communication in recent years, as the frequency of international exchanges has increased and that language learning should focus on oral language education. However, there are numerous issues with teaching oral English. When students perform individual oral practice after class, for example, they are unable to determine whether their pronunciation is correct. As a result, a computer-assisted study into automatic pronunciation of spoken English has become a viable solution to these issues. However, the present spoken English pronunciation mistake correction model’s accuracy and stability have not yet reached an optimal level. Based on this background, this work provides an enhanced random forest model and uses it to detect and correct automatic pronunciation errors in English classes. The improved random forest (RF) algorithm is used to classify and detect whether the learner’s pronunciation is correct. Mel cepstral coefficient (MFCC) is used for feature extraction, and principal component analysis (PCA) is used for dimensionality reduction of feature data. The experimental structure demonstrates that by using a combination classification framework based on MFCC, PCA, and RF, the learner’s pronunciation difficulty may be resolved. This allows for different error categories to receive feedback corrections.

Funder

Huanghe Science and Technology College

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,General Computer Science,Signal Processing

Reference26 articles.

1. Reflections on the use of computers in second language acquisition — II

2. Computer assisted language learning as cognitive science: the choice of syntactic frameworks for language tutoring;M. C. Intelligent;Journal of Artificial Intelligence in Education,1994

3. AUTO ADAPTED ENGLISH PRONUNCIATION EVALUATION: A FUZZY INTEGRAL APPROACH

4. Dealing with L1 background and L2 dialects in Norwegian CAPT;A. O. Husby

5. Common pronunciation problems of Vietnamese learners of English;C. T. Ha;Journal of Science,2005

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3