Using Network Pharmacology and Animal Experiment to Investigate the Therapeutic Mechanisms of Polydatin against Vincristine-Induced Neuropathic Pain

Author:

Xi Peng1,Mao Rui2,Wu Shiyan1,Liu Lei1,Cai Ceng2,Lu Lei1,Zhang Cailin1,Li Yimei1ORCID

Affiliation:

1. Department of Pain, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang 830054, Urumchi, China

2. Department of Tumor Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang 830054, Urumchi, China

Abstract

Background. Polydatin (PD) is the primary active compound in Polygonum cuspidatum Sieb and has been demonstrated to exert anti-inflammatory and neuroprotective activities. In the present study, we aimed to explore the therapeutic mechanisms of PD against chemotherapy-induced neuropathic pain. Methods. The putative targets of PD were obtained from the CTD and SwissTargetPrediction databases. Neuropathic pain- and VIN-related targets were collected from the CTD and GeneCards databases. Subsequently, the intersection targets were obtained using the Venn tool, and the protein-protein interaction (PPI) was constructed by the STRING database. GO and KEGG enrichment analyses were performed to investigate the biological functions of the intersection targets. Further, a rat model of VIN-induced neuropathic pain was established to confirm the reliability of the network pharmacology findings. Results. A total of 46 intersection targets were identified as potential therapeutic targets, mainly related to neuroinflammation. KEGG pathway analysis indicated that the IL-17 signaling pathway was involved in the mechanism of the antinociceptive effect of PD. PPI network analysis indicated that RELA, IL-6, TP53, MAPK3, and MAPK1 were located at crucial nodes in the network. Additionally, PD exerted an antinociceptive effect by increasing the nociceptive threshold. The results of qRT-PCR, western blot, and immunohisochemistry indicated that PD inhibited the IL-6, TP53, and MAPK1 levels in VIN-induced neuropathic pain rats. Conclusions. Overall, this research provided evidence that suppressing inflammatory signaling pathways might be a potential mechanism action of PD’s antinociceptive effect against VIN-induced neuropathic pain.

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3