Network Pharmacology-Based Analysis of the Pharmacological Mechanisms of Aloperine on Cardiovascular Disease

Author:

Huang Bingwu1,Xiong Juncheng1,Zhao Xuyong2,Zheng Yihan3,Zhu Ning2ORCID

Affiliation:

1. Department of Anesthesiology, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, No. 299 Guan Road, Wenzhou 325000, Zhejiang Province, China

2. Department of Cardiology, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, No. 299 Guan Road, Wenzhou 325000, Zhejiang Province, China

3. Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, State Key Laboratory of Ophthalmology, Optometry and Visual Science, No. 270 Xueyuan West Road, Wenzhou 325000, Zhejiang Province, China

Abstract

Background. Aloperine is an active component of Sophora alopecuroides Linn, which has been extensively applied for the treatment of cardiovascular disease (CVD). However, our current understanding of the molecular mechanisms supporting the effects of aloperine on CVD remains unclear. Methods. Systematic network pharmacology was conducted to provide testable hypotheses about pharmacological mechanisms of the protective effects of aloperine against CVD. Detailed structure was obtained from Traditional Chinese Medicines Integrated Database (TCMID). Target genes of aloperine against CVD were collected from SwissTargetPrediction, DrugBank database, and Online Mendelian Inheritance in Man (OMIM) database. Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway performance, and network construction were adopted to explore common target genes. Results. Our findings showed that 25 candidate targets were the interacting genes between aloperine and CVD. GO analysis revealed biological process, cellular component, and molecular function of these target genes. More importantly, the majority of enrichment pathways was found to be highly associated with the nitrogen metabolism by KEGG analysis. Core genes particularly in nitrogen metabolism pathway including carbonic anhydrase (CA) III, CA IV, CA VA, CA VB, CA VI, CA VII, CA IX, CA XII, and CA XIV can be modulated by aloperine in the nitrogen metabolism. Conclusion. Our work revealed the pharmacological and molecular mechanisms of aloperine against CVD and provided a feasible tool to identify the pharmacological mechanisms of single active ingredient of traditional Chinese medicines.

Funder

Natural Science Foundation of Zhejiang Province

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3