TiO2Coating and UV Photofunctionalization Enhance Blood Coagulation on Zirconia Surfaces

Author:

Shahramian Khalil12ORCID,Abdulmajeed Aous23ORCID,Kangasniemi Ilkka2,Söderling Eva1ORCID,Närhi Timo124ORCID

Affiliation:

1. Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, 20520 Turku, Finland

2. Turku Clinical Biomaterials Center (TCBC), University of Turku, 20520 Turku, Finland

3. Department of General Practice, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA

4. Clinic of Oral Diseases, Turku University Central Hospital, 20520 Turku, Finland

Abstract

This in vitro study was designed to evaluate the effect of sol-gel derived TiO2coating on blood coagulation, blood protein adsorption, and platelet response on zirconia surfaces. Square-shaped zirconia (n=96) (10x10x2 mm) was cut, ground, sintered, and finally cleansed ultrasonically in each of acetone and ethanol for 5 minutes. Three experimental groups (n=32) were fabricated: (a) zirconia coated with sol-gel derived TiO2, (b) zirconia coated with sol-gel derived TiO2and treated with ultraviolet (UV) irradiation for 1 hour, and (c) non-coated zirconia as control. The coatings were prepared from tetraisopropyl orthotitanate solution by dip-coating. The thrombogenicity of the specimens was evaluated using a whole blood kinetic clotting time method where the extent of blood clotting was evaluated at 10, 20, 30, 40, 50, and 60 minutes (n=4/time point, total n=24/group). Scanning electron microscope images were taken to observe platelet morphologies after 1-hour incubation with platelet-rich plasma (PRP) (n=5/group). Surface characteristics were visualized using atomic force microscopy (n=1/group). Adsorption of plasma proteins and fibronectin on each surface was studied by gel electrophoresis (n=2/group). Significant differences were observed in blood coagulation between the test groups at 20-, 30-, 40-, and 50-minute time points (p<0.005). UV treated TiO2coated specimens showed fastest blood coagulation followed by TiO2coated and non-coated specimens. Furthermore, platelets appeared at a higher activation state on coated specimens. Gel electrophoresis revealed no difference in protein adsorption among the experimental groups. In summary, TiO2coatings promoted blood coagulation, and it was further enhanced by UV treatment, which has the potential to hasten the wound healing process in vivo.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3