From FORTRAN 77 to Locality-Aware High Productivity Languages for Peta-Scale Computing

Author:

Zima Hans P.1

Affiliation:

1. Institute for Scientific Computing, University of Vienna, Austria and Jet Propulsion Laboratory, CA, USA and Institute of Technology, Pasadena, CA, USA

Abstract

When the first specification of the FORTRAN language was released in 1956, the goal was to provide an "automatic programming system" that would enhance the economy of programming by replacing assembly language with a notation closer to the domain of scientific programming. A key issue in this context, explicitly recognized by the authors of the language, was the requirement to produce efficient object programs that could compete with their hand-coded counterparts. More than 50 years later, a similar situation exists with respect to finding the right programming paradigm for high performance computing systems. FORTRAN, as the traditional language for scientific programming, has played a major role in the quest for high-productivity programming languages that satisfy very strict performance constraints. This paper focuses on high-level support for locality awareness, one of the most important requirements in this context. The discussion centers on the High Performance Fortran (HPF) family of languages, and their influence on current language developments for peta-scale computing. HPF is a data-parallel language that was designed to provide the user with a high-level interface for programming scientific applications, while delegating to the compiler the task of generating an explicitly parallel message-passing program. We outline developments that led to HPF, explain its major features, identify a set of weaknesses, and discuss subsequent languages that address these problems. The final part of the paper deals with Chapel, a modern object-oriented language developed in the High Productivity Computing Systems (HPCS) program sponsored by DARPA. A salient property of Chapel is its general framework for the support of user-defined distributions, which is related in many ways to ideas first described in Vienna Fortran. This framework is general enough to allow a concise specification of sparse data distributions. The paper concludes with an outlook to future research in this area.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3