Affiliation:
1. College of Mechanical Engineering and State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China
2. College of Mechanical Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China
Abstract
A comprehensive fault analysis of CNC machine tool is conducive to improving its reliability. Due to the highly complex structure of CNC machine tool, there are different degrees of coupling relationship between faults. However, the traditional fault analysis methods (FMEA, FTA, etc.) for CNC machine tool do not solve this problem perfectly. Therefore, we propose a coupling fault propagation model based on meta-action. First, in order to simplify the structural complexity of CNC machine tool, the “Function-Motion-Action (FMA)” decomposition structure is used to decompose the product function into simple meta-action, and the numerical matrix is used to quantify the coupling relationship between the meta-actions. Then, based on the fault transfer characteristics of meta-action, the fault propagation model is established, and the global risk effect (GRE) is combined to realize the comprehensive evaluation of the risk criticality of meta-actions. Finally, the rationality and validity of the method are verified by the case analysis of the automatic pallet changer (APC) of computerized numerical control (CNC) machining center.
Funder
National Natural Science Foundation of China
Subject
Multidisciplinary,General Computer Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献