Lycopus lucidus Turcz Inhibits the Osteoclastogenesis in RAW 264.7 Cells and Bone Loss in Ovariectomized Rat Model

Author:

Jeong Da-Won1,Kim Eun-Young1,Kim Jae-Hyun1,Lee Bina1ORCID,Hong SooYeon1,Park Jae Ho2ORCID,Jung Hyuk-Sang1ORCID,Sohn Youngjoo1ORCID

Affiliation:

1. Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea

2. Department of Medicinal Plant Science, Jungwon University, 85 Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk, Republic of Korea

Abstract

Lycopus lucidus (LL) is a perennial herb that is traditionally used in Asia to treat edema, wound healing, and gynecological diseases such as irregular menstruation and menstrual pain. We hypothesized that LL would decrease the risk of developing osteoporosis, which is a condition related to gynecological diseases. In this study, we aimed to investigate the effect of a water extract of LL on osteoclastogenesis in vitro and osteoporosis in vivo. In vitro study, we used RAW 264.7 cells as osteoclast precursor cell. Osteoclast differentiation was induced by receptor activator nuclear factor-kappa B ligand (RANKL). We investigated the effect of LL on RANKL-induced osteoclastogenesis, tartrate-resistant acid phosphatase (TRAP) activity, and osteoclast-related genes. In vivo study, we used ovariectomized- (OVX-) induced osteoporosis rat model. OVX-induced Sprague-Dawley rats were randomly separated into sham, OVX, 17β-estradiol (100 μg/kg), wLL-L (15.2 mg/kg), and wLL-H (152 mg/kg) groups. Drugs were administered orally once daily for 9 weeks. wLL inhibited the formation of TRAP-positive osteoclasts; TRAP activity; pit formation; transcription factors (the nuclear factor of activated T-cell cytoplasmic 1 and c-fos); and osteoclast-related genes such as TRAP, carbonic anhydrase II, cathepsin K, osteoclast-associated receptor, and the d2 isoform of the vacuolar ATPase Vo domain. Also, wLL prevented loss of the trabecular area in the OVX femur without change of estrogen level. These results indicate that wLL is able to inhibit osteoclastogenesis and protect bone loss in the OVX-induced osteoporosis model without the influence of hormones like estrogen.

Funder

Ministry of Science, ICT and Future Planning

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3