Affiliation:
1. State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
Abstract
Electric arc furnace (EAF) causes the harmonics to impact on the supply network greatly and harmonic elimination is a very important research work for the power quality associated with EAF. In the paper, a fundamental wave amplitude prediction algorithm based on fuzzy neural network for harmonic elimination of EAF current is proposed. The proposed algorithm uses the learning ability of the neural network to refine Takagi-Sugeno type fuzzy rules and the inputs are the average of the current measured value in different time intervals. To verify the effectiveness of the proposed algorithm, some experiments are performed to compare the proposed algorithm with the back-propagation neural networks, and the field data collected at an EAF are used in the experiments. Moreover, the measured amplitudes of fundamental waves of field data are obtained by the sliding-window-based discrete Fourier transform on the field data. The experiments results show that the proposed algorithm has higher precision. The real curves also verify that the amplitude of fundamental wave current could be predicted accurately and the harmonic elimination of EAF would be realized based on the proposed algorithm.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献