A New Chaotic Starling Particle Swarm Optimization Algorithm for Clustering Problems

Author:

Wang Lin1ORCID,Liu Xiyu1ORCID,Sun Minghe2ORCID,Qu Jianhua1ORCID,Wei Yanmeng1

Affiliation:

1. College of Management Science and Engineering, Shandong Normal University, Jinan 250014, China

2. College of Business, The University of Texas at San Antonio, San Antonio, TX, USA

Abstract

A new method using collective responses of starling birds is developed to enhance the global search performance of standard particle swarm optimization (PSO). The method is named chaotic starling particle swarm optimization (CSPSO). In CSPSO, the inertia weight is adjusted using a nonlinear decreasing approach and the acceleration coefficients are adjusted using a chaotic logistic mapping strategy to avoid prematurity of the search process. A dynamic disturbance term (DDT) is used in velocity updating to enhance convergence of the algorithm. A local search method inspired by the behavior of starling birds utilizing the information of the nearest neighbors is used to determine a new collective position and a new collective velocity for selected particles. Two particle selection methods, Euclidean distance and fitness function, are adopted to ensure the overall convergence of the search process. Experimental results on benchmark function optimization and classic clustering problems verified the effectiveness of this proposed CSPSO algorithm.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3