Diagnosis of COVID-19 Using a Deep Learning Model in Various Radiology Domains

Author:

Alhwaiti Yousef1ORCID,Siddiqi Muhammad Hameed1ORCID,Alruwaili Madallah1ORCID,Alrashdi Ibrahim1,Alanazi Saad1ORCID,Jamal Muhammad Hasan2

Affiliation:

1. College of Computer and Information Sciences, Jouf University, Sakaka, Aljouf, 2014, Saudi Arabia

2. Department of Computer Science, COMSATS University, Islamabad, Lahore Campus, Pakistan

Abstract

Many countries are severely affected by COVID-19, and various casualties have been reported. Most countries have implemented full and partial lockdowns to control COVID-19. Paramedical employee infections are always a threatening discovery. Front-line paramedical employees might initially be at risk when observing and treating patients, who can contaminate them through respiratory secretions. If proper preventive measures are absent, front-line paramedical workers will be in danger of contamination and can become unintentional carriers to patients admitted in the hospital for other illnesses and treatments. Moreover, every country has limited testing capacity; therefore, a system is required which helps the doctor to directly check and analyze the patients’ blood structure. This study proposes a generalized adaptive deep learning model that helps the front-line paramedical employees to easily detect COVID-19 in different radiology domains. In this work, we designed a model using convolutional neural network in order to detect COVID-19 from X-ray, Computed Tomography (CT), and Magnetic Resonance Imaging (MRI) images. The proposed model has 27 layers (input, convolutional, max-pooling, dropout, flatten, dense, and output layers), which has been tested and validated on various radiology domains such as X-ray, CT, and MRI. For experiments, we utilized 70% of the dataset for training and 30% for testing against each dataset. The weighted average accuracies for the proposed model are 94%, 85%, and 86% on X-ray, CT, and MRI, respectively. The experiments show the significance of the model against state-of-the-art works.

Funder

Al Jouf University

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AI-Driven Predictive Model;Advances in Medical Diagnosis, Treatment, and Care;2024-01-05

2. Predicting Mental Health Disorders in the Technical Workplace: A Study on Feature Selection and Classification Algorithms;Lecture Notes in Networks and Systems;2024

3. Deep Learning-Based Health Care System Using Chest X-Ray Scans for Image Classification;Communications in Computer and Information Science;2024

4. A Deep Learning Approach in Detection of COVID-19 Positive Patients using CT Scan Images;2022 4th International Conference on Inventive Research in Computing Applications (ICIRCA);2022-09-21

5. Expecting individuals’ body reaction to Covid-19 based on statistical Naïve Bayes technique;Pattern Recognition;2022-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3