Solving Power Economic Dispatch Problem with a Novel Quantum-Behaved Particle Swarm Optimization Algorithm

Author:

Ping Li1ORCID,Sun Jun2ORCID,Chen Qidong2ORCID

Affiliation:

1. IoT School, Wuxi Institute of Technology, Wuxi 214121, China

2. IoT School, Jiangnan University, Wuxi 214122, China

Abstract

This paper proposes the shrink Gaussian distribution quantum-behaved optimization (SG-QPSO) algorithm to solve economic dispatch (ED) problems from the power systems area. By shrinking the Gaussian probability distribution near the learning inclination point of each particle iteratively, SG-QPSO maintains a strong global search capability at the beginning and strengthen its local search capability gradually. In this way, SG-QPSO improves the weak local search ability of QPSO and meets the needs of solving the ED optimization problem at different stages. The performance of the SG-QPSO algorithm was obtained by evaluating three different power systems containing many nonlinear features such as the ramp rate limits, prohibited operating zones, and nonsmooth cost functions and compared with other existing optimization algorithms in terms of solution quality, convergence, and robustness. Experimental results show that the SG-QPSO algorithm outperforms any other evaluated optimization algorithms in solving ED problems.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An innovative bio-inspired Aquila technique for efficient solution of combined power and heat economic dispatch problem;Scientific Reports;2024-09-04

2. Chi-square mutated quantum-behaved PSO algorithm for combined economic and emission dispatch;Evolutionary Intelligence;2024-08-05

3. Application of Intelligent Optimization Algorithms on Economic Dispatch Problem;2024 XXVII International Conference on Soft Computing and Measurements (SCM);2024-05-22

4. Optimal power flow approaches for a hybrid system using metaheuristic techniques: a comprehensive review;International Journal of Ambient Energy;2024-05-06

5. Combined Economic Emission Dispatch using a Novel Quantum Behaved-BAT Algorithm for a Hybrid Microgrid;2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG);2024-04-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3