Multitask Learning by Multiwave Optical Diffractive Network

Author:

Su Jing1,Yuan Yafei2ORCID,Liu Chunmin1,Li Jing1

Affiliation:

1. Department of Optical Science and Engineering, Fudan University, Shanghai 200433, China

2. Department of Electronic Engineering, Center for Intelligent Medical Electronics, Fudan University, Shanghai 200433, China

Abstract

Recently, there has been tremendous research studies in optical neural networks that could complete comparatively complex computation by optical characteristic with much more fewer dissipation than electrical networks. Existed neural networks based on the optical circuit are structured with an optical grating platform with different diffractive phases at different diffractive points (Chen and Zhu, 2019 and Mo et al., 2018). In this study, it proposed a multiwave deep diffractive network with approximately 106 synapses, and it is easy to make hardware implementation of neuromorphic networks. In the optical architecture, it can utilize optical diffractive characteristic and different wavelengths to perform different tasks. Different wavelengths and different tasks inputs are independent of each other. Moreover, we can utilize the characteristic of them to inference several tasks, simultaneously. The results of experiments were demonstrated that the network could get a comparable performance to single-wavelength single-task. Compared to the multinetwork, single network can save the cost of fabrication with lithography. We train the network on MNIST and MNIST-FASHION which are two different datasets to perform classification of 32∗32 inputs with 10 classes. Our method achieves competitive results across both of them. In particular, on the complex task MNIST_FASION, our framework obtains an excellent accuracy improvement with 3.2%. In the meanwhile, MNSIT also has the improvement with 1.15%.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3