Synthesis and Characterization of Conductive Polypyrrole: The Influence of the Oxidants and Monomer on the Electrical, Thermal, and Morphological Properties

Author:

Yussuf Abdirahman1ORCID,Al-Saleh Mohammad1,Al-Enezi Salah1ORCID,Abraham Gils1ORCID

Affiliation:

1. Polymeric Products and Customization Program, Petroleum Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109 Safat, Kuwait

Abstract

Conductive polymer, polypyrrole (PPy), was synthesized by chemical oxidative polymerization technique for a period of four hours at room temperature using pyrrole monomer (mPPy) in aqueous solution. Different oxidants such as ferric chloride (FeCl3) and ammonium persulphate (N2H8S2O8) and surfactant sodium dodecyl sulphate (C12H25NaO4S) were used. The produced PPy samples were characterized by using different techniques such as the electrical resistivity by four probe technique, thermogravimetry analysis (TGA), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The performance of the oxidants has been investigated and compared. It was found that both oxidants, FeCl3 and N2H8S2O8, have decreased electrical resistivity as a function of temperature, which means increased conductivity. However, FeCl3 has achieved better performance than N2H8S2O8, where it has achieved a lower resistivity of about 60 ohms at room temperature, which indicates higher conductivity of PPy samples with FeCl3 as an oxidant. Similarly, further investigation of FeCl3 oxidant has been conducted by varying its concentration, and its influence on the final properties was reported. It has been observed that the morphology of PPy samples has a significant influence on the conductivity. It was found that 0.1 M and 0.05 M concentrations of FeCl3 oxidant and monomer, respectively, have achieved better thermal stability, which is FeCl3/mPPy ratio of 2 as an optimum value. FTIR and XRD results confirmed the structural formation of polypyrrole from pyrrole monomer during the synthesizing process.

Funder

Kuwait Institute for Scientific Research

Publisher

Hindawi Limited

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3