Affiliation:
1. Kazan Federal University, Kremlevskaya Street 18, Kazan 420008, Russia
2. Biomedical Engineering Research Center, Saint Petersburg Electrotechnical University, Professor Popov Street 5, Saint Petersburg 197376, Russia
Abstract
Opportunistic bacteriaStaphylococcus aureusandStaphylococcus epidermidisoften form rigid biofilms on tissues and inorganic surfaces. In the biofilm bacterial cells are embedded in a self-produced polysaccharide matrix and thereby are inaccessible to biocides, antibiotics, or host immune system. Here we show the antibacterial activity of newly synthesized cationic biocides, the quaternary ammonium, and bisphosphonium salts of pyridoxine (vitamin B6) against biofilm-embeddedStaphylococci. The derivatives of 6-hydroxymethylpyridoxine were ineffective against biofilm-embeddedS. aureusandS. epidermidisat concentrations up to 64 μg/mL, although all compounds tested exhibited low MICs (2 μg/mL) against planktonic cells. In contrast, the quaternary ammonium salt of pyridoxine (N,N-dimethyl-N-((2,2,8-trimethyl-4H-[1,3]dioxino[4,5-c]pyridin-5-yl)methyl)octadecan-1-aminium chloride (3)) demonstrated high biocidal activity against both planktonic and biofilm-embedded bacteria. Thus, the complete death of biofilm-embeddedS. aureusandS. epidermidiscells was obtained at concentrations of 64 and 16 μg/mL, respectively. We suggest that the quaternary ammonium salts of pyridoxine are perspective to design new synthetic antibiotics and disinfectants for external application against biofilm-embedded cells.
Subject
General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献