Reliability-Based Estimation of Traffic Interruption Probability due to Road Waterlogging

Author:

Contreras-Jara Manuel1,Echaveguren Tomás12ORCID,Vargas Baecheler José1,Chamorro Giné Alondra23ORCID,de Solminihac Tampier Hernán34

Affiliation:

1. Laboratory of Transportation Systems Management (GESITRAN), Departamento de Ingeniería Civil, Facultad de Ingeniería, Universidad de Concepción, Edmundo Larenas 219, Concepción, Chile

2. National Research Center for Integrated Natural Disaster Management (CIGIDEN), CONICYT/FONDAP/15110017, Avda. Vicuña Mackenna 4860, Santiago, Chile

3. Department of Construction Engineering and Management, School of Engineering, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Santiago, Chile

4. Latin American Center of Economic and Social Policies (CLAPES UC), Avda. Libertador Bernardo O’Higgins 440, Piso 13, Santiago, Chile

Abstract

Floods affect road infrastructure physically and operationally, increase road user costs and road agencies cost, and eventually isolate communities. The research of the effect of floods on vehicular circulation is mainly focused on the stability of vehicles. There are few studies related to the regime of still water in the trafficability. In still water, the speed flow is low and does not compromise the vehicle stability. In this case, the vehicle’s wading height becomes relevant. This article proposes a procedure to estimate the traffic interruption probability caused by floods in roads, considering the still water regime. The procedure uses the first-order reliability method to estimate traffic interruption probabilities, based on the difference between the probability density functions (PDF) of still water depth (or waterlogging depth) and vehicle wading height. A specific procedure to estimate the PDF of wading height based in the geometric characteristics of light and heavy vehicles was developed. The PDF for water depth was estimated using water level profile simulation software. The procedure was applied in the south of Chile. The PDF of wading height was obtained from a record of 166,155 vehicles tagged in open road tolls. The PDF of waterlogging depth was obtained from discharge records of 10 fluviometric stations. 42 probability curves were obtained for six vehicle classes and return periods between 4 and 500 years. The still water depth obtained for traffic interruption probability of 1,0 varied between 70 and 90 cm for light vehicles and between 110 and 150 cm for heavy vehicles.

Funder

Comisión Nacional de Investigación Científica y Tecnológica

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3