A Hybrid Neutrosophic-Grey Analytic Hierarchy Process Method: Decision-Making Modelling in Uncertain Environments

Author:

Vafadarnikjoo Amin1ORCID,Scherz Marco2ORCID

Affiliation:

1. Department of Operations, Technology, Events, and Hospitality Management, Business School, Faculty of Business and Law, Manchester Metropolitan University, Manchester, M15 6BH, UK

2. Working Group Sustainable Construction, Institute of Technology and Testing of Construction Materials, Graz University of Technology, Graz, Austria

Abstract

The analytic hierarchy process (AHP) is recognised as one of the most commonly applied methods in the multiple attribute decision-making (MADM) literature. In the AHP, encompassing uncertainty feature necessitates using suitable uncertainty theories, since dealing efficiently with uncertainty in subjective judgements is of great importance in real-world decision-making problems. The neutrosophic set (NS) theory and grey systems are two reliable uncertainty theories which can bring considerable benefits to uncertain decision-making. The aim of this study is to improve uncertain decision-making by incorporating advantages of the NS and grey systems theories with the AHP in investigating sustainability through agility readiness evaluation in large manufacturing plants. This study pioneers a combined neutrosophic-grey AHP (NG-AHP) method for uncertain decision-making modelling. The applicability of the hybrid NG-AHP method is shown in an illustrative real-case study for agility evaluations in the Iranian steel industry. The computational results indicate the effectiveness of the proposed method in adequately capturing uncertainty in the subjective judgements of decision makers. In addition, the results verify the significance of the research in group decision-making under uncertainty. The practical outcome reveals that, to become a more sustainable agile steel producer in the case country, they should first focus on the “organisation management agility” as the most significant criterion in the assessment followed by “manufacturing process agility,” “product design agility,” “integration of information system,” and “partnership formation capability,” respectively.

Funder

TU Graz

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3