Clustering Algorithm for Big Datasets with Mixed Attribute Features under Spark

Author:

Wang Jiankai1ORCID

Affiliation:

1. School of Information Engineering, Chengdu College of Arts and Sciences, Chengdu, Sichuan 610401, China

Abstract

This paper presents an in-depth study and analysis of large datasets of mixed and attribute features under Spark using a large dataset clustering algorithm. The classical algorithm K-means based on division and the density-based clustering algorithm DPC, which has become more popular in recent years, are selected as the research objects of this paper. Secondly, the original K-means algorithm is improved by combining holdout validation and K-means++ method to address the shortcomings of the K-means algorithm that the number of class clusters K needs to be set in advance and the initial class cluster centers are chosen randomly, which leads to unstable iterations and slow convergence of clustering results. The similarity matrix will be continuously updated during the iterative process. It mainly refers to the process of dividing objects into multiple classes according to the degree of similarity between objects. After the division, the objects within the class are like each other, while the objects between the classes are different from each other. The comparison experiments of the improved algorithm before and after the MovieLens dataset are conducted to verify that the new algorithm has better performance in terms of clustering accuracy and efficiency. Again, to address the drawback that the clustering results in the DPC algorithm rely heavily on the subjective selection of the truncation distance parameter cd, and it is difficult to handle datasets with complex distribution and large density variation, the algorithm can generate the optimal cd adaptively by combining K-nearest neighbors and introducing the distance comparison quantity, which has a better performance by considering the overall and local distribution of the data. The feasibility of the improved method is verified by validating the algorithm with artificial datasets and UCI datasets as well as separation tests. Finally, the parallelized design and implementation of the improved K-means algorithm and CDPC-KNN algorithm are completed by building a Spark clustering environment, and the parallelized algorithm is verified to have much better data processing capability and be more adaptable to the clustering analysis of large-scale data by comparing algorithm string parallelism experiments.

Funder

Chengdu College of Arts and Sciences

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3