Potential Role of Synaptic Activity to Inhibit LTD Induction in Rat Visual Cortex

Author:

Stewart Matthew R.1,Dringenberg Hans C.12ORCID

Affiliation:

1. Department of Psychology, Queen’s University, Kingston, ON, Canada K7L 3N6

2. Center for Neuroscience Studies, Queen’s University, Kingston, ON, Canada K7L 3N6

Abstract

Long-term depression (LTD), a widely studied form of activity-dependent synaptic plasticity, is typically induced by prolonged low-frequency stimulation (LFS). Interestingly, LFS is highly effective in eliciting LTDin vitro, but much less so underin vivoconditions; the reasons for the resistance of the intact brain to express LTD are not well understood. We examined if levels of background electrocorticographic (ECoG) activity influence LTD induction in the thalamocortical visual system of rats under very deep urethane anesthesia, inducing a brain state of reduced spontaneous cortical activity. Under these conditions, LFS applied to the lateral geniculate nucleus resulted in LTD of field postsynaptic potentials (fPSPs) recorded in the primary visual cortex (V1). Pairing LFS with stimulation of the brainstem (pedunculopontine) reticular formation resulted in the appearance of faster, more complex activity in V1 and prevented LTD induction, an effect that did not require muscarinic or nicotinic receptors. Reticular stimulation alone (without LFS) had no effect on cortical fPSPs. These results show that excitation of the brainstem activating system blocks the induction of LTD in V1. Thus, higher levels of neural activity may inhibit depression at cortical synapses, a hypothesis that could explain discrepancies regarding LTD induction in previousin vivoandin vitrowork.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Hindawi Limited

Subject

Clinical Neurology,Neurology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3