Numerical Simulation of Fluid-Solid Coupling in Surrounding Rock for River Stope Mining

Author:

Yuan Haiping12,Chen Chenghao1,He Zhongming2,Wang Yixian1ORCID

Affiliation:

1. School of Civil and Hydraulic Engineering, HeFei University of Technology, Hefei, China

2. State Engineering Laboratory of Highway Maintenance Technology, Changsha University of Science & Technology, Changsha, China

Abstract

Mining disturbance will induce further weakening of faults and rock bridges, improve rock mass permeability and, in serious cases, conduct surface rivers to cause disasters. A numerical calculation model of river-fault in the mining area is established. Based on the fluid-solid coupling theory of rock mass, the influence of mining disturbance on the development and evolution process of rock bridge rupture and river-fault-stope potential seepage channel is simulated and calculated. Research studies show that under the disturbance of ore body mining, it is possible to form a channel from the river to fault to seepage and drainage in the stope. The disturbance of ore body mining has no great adverse effect on the stability of the rock mass at the top of F2 fault. The rock mass damage caused by mining is only distributed in local areas, and the rock bridge between the river, fault, and stope is not completely connected. The fracture of mining rock mass leads to the increase in permeability of rock mass, and seepage tends to spread in the direction of the fault, but there is no obvious through drainage channel from surface water to the stope. The results of research provide technical guidance for the mine to use the filling mining method after the river does not change the road safety and reliability certification and can also provide reference for similar mines.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3