Biological Removal and Fate Assessment of Diclofenac Using Bacillus subtilis and Brevibacillus laterosporus Strains and Ecotoxicological Effects of Diclofenac and 4′-Hydroxy-diclofenac

Author:

Grandclément Camille123,Piram Anne1ORCID,Petit Marie-Eléonore4,Seyssiecq Isabelle2,Laffont-Schwob Isabelle45,Vanot Guillaume3,Tiliacos Nicolas3,Roche Nicolas6ORCID,Doumenq Pierre1

Affiliation:

1. Aix-Marseille University, CNRS, LCE, Marseille, France

2. Aix-Marseille University, CNRS, Cent Marseille, M2P2, Marseille, France

3. Société Prodibio SAS, Groupe Ovalee, Technopôle de Château-Gombert, Héliopolis, Marseille, France

4. Aix-Marseille University, Univ Avignon, CNRS, IRD, IMBE, Marseille, France

5. Aix-Marseille University, IRD, LPED, Marseille, France

6. Aix-Marseille University, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France

Abstract

Since bacterial consortia involved in conventional wastewater treatment processes are not efficient in removing diclofenac (DCF), an emerging pollutant frequently detected in water bodies, the identification of microorganisms able to metabolise this pharmaceutical compound is relevant. Thus, DCF removal was investigated using bacteria isolated from aqueous stock solutions of this micropollutant and identified as Bacillus and Brevibacillus species using 16S rRNA gene sequencing. A 100% DCF removal was achieved after 17 hours of experiment at 20°C in a nutrient medium; the biodegradation kinetic followed a pseudo-first order (kbiol = 11 L·gSS−1·d−1). Quantitative assessment of DCF removal showed that its main route was biotic degradation. The main degradation product of DCF, 4′-hydroxy-diclofenac (4′-OH-DCF), was identified using liquid chromatography-electrospray ionisation high-resolution mass spectrometry. Since the ecotoxicological impact of 4′-hydroxy-diclofenac was not reported in the literature, the ecotoxicity of DCF and its metabolite were tentatively evaluated using Vibrio fischeri bioassays. Results from these tests showed that this metabolite is not more toxic than its parent compound and may hopefully be an intermediate product in the DCF transformation. Indeed, no significant difference in ecotoxicity was observed after 30 min between DCF (50 should be writtten in subscript all along the manuscript in EC50 = 23 ± 4 mg·L−1) and 4′-hydroxy-diclofenac (EC50 = 19 ± 2 mg·L−1). Besides, the study highlighted a limit of the Microtox® bioassay, which is largely used to assess ecotoxicity. The bioluminescence of Vibrio fischeri was impacted due to the production of microbial activity and the occurrence of some carbon source in the studied medium.

Funder

French Public Investment Bank

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3