Affiliation:
1. School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018, China
2. School of Computer and Information Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
3. Beijing Yunzhenxin Technology Co., Ltd., Hangzhou 310012, China
Abstract
With the rapid development of mobile Internet, the social network has become an important platform for users to receive, release, and disseminate information. In order to get more valuable information and implement effective supervision on public opinions, it is necessary to study the public opinions, sentiment tendency, and the evolution of the hot events in social networks of a smart city. In view of social networks’ characteristics such as short text, rich topics, diverse sentiments, and timeliness, this paper conducts text modeling with words co-occurrence based on the topic model. Besides, the sentiment computing and the time factor are incorporated to construct the dynamic topic-sentiment mixture model (TSTS). Then, four hot events were randomly selected from the microblog as datasets to evaluate the TSTS model in terms of topic feature extraction, sentiment analysis, and time change. The results show that the TSTS model is better than the traditional models in topic extraction and sentiment analysis. Meanwhile, by fitting the time curve of hot events, the change rules of comments in the social network is obtained.
Funder
Project of National Science and Technology Department
Subject
Multidisciplinary,General Computer Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献