lncRNA OIP5-AS1 Suppresses Cell Proliferation and Invasion of Endometrial Cancer by Regulating PTEN/AKT via Sponging miR-200c-3p

Author:

Liu Yun1ORCID,Cai Xiaohui1,Cai Yixuan1,Chang Yue1

Affiliation:

1. Department of Obstetrics and Gynecology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China

Abstract

Background. Endometrial carcinoma (EC) is one of the major gynecologic malignancy cancers affecting females with dismal prognosis and high mortality around the world. Numerous studies have proven that an aberrant level of long noncoding RNAs is present in many endometrial cancer patients, while the underlying molecular mechanism remains unclear. Method. The expression levels of lncRNA OIP5-AS1, miR200c-3p, and PTEN were measured by a quantitative real-time polymerase chain reaction in endometrial cancer tissue and endometrial cancer cells. CCK8 assay, wound-healing assay, and cell colony formation were applied to evaluate cell proliferation, cell migration, and cell colony formation ability. Cell cycle and cell apoptosis were detected by flow cytometry. The interactions between OIP5-AS1, miR200c-3p, and PTEN were explored by luciferase activity. Results. In the present study, we demonstrated that long noncoding RNA OIP5-AS1 was significantly reduced in EC tissue compared with normal tissue. The lower expression level of OIP5-AS1 was also confirmed in four kinds of EC cell lines compared with the normal endometrial cell line. Gain- and loss-of-function of experiments indicated that upregulation of OIP5-AS1 could inhibit the proliferation, migration, and invasion of EC cells in vitro. Meanwhile, overexpression of OIP5-AS1 could also suppress the growth of tumor in the xenograft model. Moreover, further study revealed that miR-200c-3p could bind to OIP5-AS1, and the loss function of miR-200c-3p could reverse the elevated OIP5-AS1’s inhibitory effect on the progression of EC. Furthermore, we found that downregulation of miR-200c-3p was inversely correlated with PTEN expression in EC cells. Reduced OIP5-AS1 could lead to the accumulation of miR-200c-3p, which could induce the upregulation of PTEN indirectly. Conclusion. Our study demonstrated a novel molecular mechanism that lncRNA OIP5-AS1 could modulate the progression of EC by combining competitively with miR-200c-3p to control the PTEN/AKT pathway in EC cells, which might supply important information for developing novel therapeutic strategies for EC patients.

Funder

Beijing Key Clinical Specialty Project

Publisher

Hindawi Limited

Subject

Immunology,General Medicine,Immunology and Allergy

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3