CKF-Based Visual Inertial Odometry for Long-Term Trajectory Operations

Author:

Nguyen Trung1ORCID,Mann George K. I.1,Vardy Andrew2,Gosine Raymond G.1

Affiliation:

1. Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada

2. Department of Computer Science and Department of Electrical and Computer Engineering, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada

Abstract

The estimation error accumulation in the conventional visual inertial odometry (VIO) generally forbids accurate long-term operations. Some advanced techniques such as global pose graph optimization and loop closure demand relatively high computation and processing time to execute the optimization procedure for the entire trajectory and may not be feasible to be implemented in a low-cost robotic platform. In an attempt to allow the VIO to operate for a longer duration without either using or generating a map, this paper develops iterated cubature Kalman filter for VIO application that performs multiple corrections on a single measurement to optimize the current filter state and covariance during the measurement update. The optimization process is terminated using the maximum likelihood estimate based criteria. For comparison, this paper also develops a second solution to integrate VIO estimation with ranging measurements. The wireless communications between the vehicle and multiple beacons produce the ranging measurements and help to bound the accumulative errors. Experiments utilize publicly available dataset for validation, and a rigorous comparison between the two solutions is presented to determine the application scenario of each solution.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Hindawi Limited

Subject

General Computer Science,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3