Affiliation:
1. School of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, China
Abstract
Digital cameras with a single sensor use a color filter array (CFA) that captures only one color component in each pixel. Therefore, noise and artifacts will be generated when reconstructing the color image, which reduces the resolution of the image. In this paper, we proposed an image demosaicing method based on generative adversarial network (GAN) to obtain high-quality color images. The proposed network does not need any initial interpolation process in the data preparation phase, which can greatly reduce the computational complexity. The generator of the GAN is designed using the U-net to directly generate the demosaicing images. The dense residual network is used for the discriminator to improve the discriminant ability of the network. We compared the proposed method with several interpolation-based algorithms and the DnCNN. Results from the comparative experiments proved that the proposed method can more effectively eliminate the image artifacts and can better recover the color image.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献