Effects of Additives and Sintering Time on the Microstructure of Ni-Zn Ferrite and Its Electrical and Magnetic Properties

Author:

Hajalilou Abdollah1,Hashim Mansor1ORCID,Mohamed Kamari Halimah2

Affiliation:

1. Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia

2. Physics Department, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia

Abstract

This work aims to investigate the relationship between the microstructure of Ni-Zn ferrite and its electrical and magnetic properties in the presence and absence of as small amounts as 0.12% of 0.4CaO + 0.8SiO2over different sintering times. The X-ray diffraction pattern showed a single spinel phase formation in all the samples. The results indicate that grain growth occurred by increasing sintering time from 15 to 270 min in the two types of samples prepared in this study although it was greatly impeded by the additive oxides. Moreover, the oxides increase the resistivity of the ferrite and decrease its zinc loss. Magnetic properties such as induction magnetization (BS) and saturation magnetization (MS) decreased in the presence of the additives while its coercivity (HC) increased. Finally, the density of the samples was observed to increase with increasing sintering time in both types of the samples but with a higher value in the samples with no additives.

Funder

University Putra Malaysia

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3