Traffic Pattern Prediction and Spectrum Allocation with Multiple Channel Width in Cognitive Cellular Networks

Author:

Wang Lu1,Zhou Zhong1,Wu Wei1

Affiliation:

1. State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science, Beihang University, Beijing 100191, China

Abstract

This paper investigates the traffic pattern prediction based on seasonal deviation and spectrum reallocation with multiple channel width in cognitive cellular networks. Compared to the existing approaches based on time series or classical statistic method, the binary exponential deviation offset prediction proposed in this paper focuses on the increment or decrement on every sampling point during an exponential offset period. Then the deviations will be revised at different levels in the next prediction process. The proposed approach is validated with some real end-user data from a WiFi network and simulation experiments. Based on such a precise prediction, we allocate the channels with different bandwidth to end-users according to diverse quality-of-service (QoS), which increases both the system's profits and actual spectrum utilization. The multidimensional bounded knapsack problem is introduced to divide channels, to which the proposed balance between value density and request probability strategy gets the approximate solution. The simulation experiment results show its good performance in not only utility but also spectrum utilization of the base-stations, especially when the resources are deficient.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3