Affiliation:
1. Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830011, China
2. College of Mathematics and Systems Science, Xinjiang University, Urumqi 830046, China
Abstract
We study a class of discrete SIRS epidemic models with nonlinear incidence rateF(S)G(I)and disease-induced mortality. By using analytic techniques and constructing discrete Lyapunov functions, the global stability of disease-free equilibrium and endemic equilibrium is obtained. That is, if basic reproduction numberℛ0<1, then the disease-free equilibrium is globally asymptotically stable, and ifℛ0>1, then the model has a unique endemic equilibrium and when some additional conditions hold the endemic equilibrium also is globally asymptotically stable. By using the theory of persistence in dynamical systems, we further obtain that only whenℛ0>1, the disease in the model is permanent. Some special cases ofF(S)G(I)are discussed. Particularly, whenF(S)G(I)=βSI/(1+λI), it is obtained that the endemic equilibrium is globally asymptotically stable if and only ifℛ0>1. Furthermore, the numerical simulations show that for general incidence rateF(S)G(I)the endemic equilibrium may be globally asymptotically stable only asℛ0>1.
Funder
National Natural Science Foundation of China
Subject
Applied Mathematics,Analysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献