Affiliation:
1. Laboratorio de Neurociencias, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
2. Facultad de Química, Universidad Nacional Autónoma de México, México City, Mexico
3. Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
4. CONACYT-Hospital Infantil de México Federico Gómez, México City, Mexico
Abstract
In recent years, progress has been made in understanding the pathological, genetic, and molecular heterogeneity of central nervous system (CNS) tumors. However, improvements in risk classification, prognosis, and treatment have not been sufficient. Currently, great importance has been placed to the tumor microenvironment and the immune system, which are very important components that influence the establishment and development of tumors. Toll-like receptors (TLRs) are innate immunite system sensors of a wide variety of molecules, such as those associated with microorganisms and danger signals. TLRs are expressed on many cells, including immune cells and nonimmune cells such as neurons and cancer cells. In the tumor microenvironment, activation of TLRs plays dual antitumoral (dendritic cells, cytotoxic T cells, and natural killer cells activation) and protumoral effects (tumor cell proliferation, survival, and resistance to chemotherapy) and constitutes an area of opportunities and challenges in the development of new therapeutic strategies. Several clinical trials have been carried out, and others are currently in process; however, the results obtained to date have been contradictory and have not led to a definitive position about the use of TLR agonists in adjuvant therapy during the treatment of central nervous system (CNS) tumors. In this review, we focus on recent advances in TLR agonists as immunotherapies for treatment of CNS tumors.
Funder
Consejo Nacional de Ciencia y Tecnología
Subject
General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献