Heartbeat Classification Using Normalized RR Intervals and Morphological Features

Author:

Lin Chun-Cheng1ORCID,Yang Chun-Min1

Affiliation:

1. National Chin-Yi University of Technology, Taichung 41170, Taiwan

Abstract

This study developed an automatic heartbeat classification system for identifying normal beats, supraventricular ectopic beats, and ventricular ectopic beats based on normalized RR intervals and morphological features. The proposed heartbeat classification system consists of signal preprocessing, feature extraction, and linear discriminant classification. First, the signal preprocessing removed the high-frequency noise and baseline drift of the original ECG signal. Then the feature extraction derived the normalized RR intervals and two types of morphological features using wavelet analysis and linear prediction modeling. Finally, the linear discriminant classifier combined the extracted features to classify heartbeats. A total of 99,827 heartbeats obtained from the MIT-BIH Arrhythmia Database were divided into three datasets for the training and testing of the optimized heartbeat classification system. The study results demonstrate that the use of the normalized RR interval features greatly improves the positive predictive accuracy of identifying the normal heartbeats and the sensitivity for identifying the supraventricular ectopic heartbeats in comparison with the use of the nonnormalized RR interval features. In addition, the combination of the wavelet and linear prediction morphological features has higher global performance than only using the wavelet features or the linear prediction features.

Funder

National Science Council

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 116 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3