Catalpol Enhances Random-Pattern Skin Flap Survival by Activating SIRT1-Mediated Enhancement of Autophagy

Author:

Jiang Ren-hao12,Dong Cheng-ji12,Chen Zhu-liu12,Cheng Sheng12,Yang Jian-xin12,Gao Wei-yang12ORCID

Affiliation:

1. Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China

2. Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China

Abstract

Random-pattern skin flap necrosis limits its application in the clinic. It is still a challenge for plastic surgeons. Catalpol is an effective ingredient extracted from Rehmannia glutinosa, which is reported to promote angiogenesis and protect against ischemic cerebral disease. The aim of our experiment is to assess whether catalpol can facilitate random flap survival and the underlying mechanisms. Male “McFarlane flap” rat models were employed to explore the protective effects of catalpol. The range of necrosis in the flap was calculated 7 days after the models were established. The flap specimens were harvested for further experiments, including angiogenesis, apoptosis, oxidative stress, and autophagy evaluation. Catalpol-treated group promoted the average survival area of the flap than that in the control group. Based on immunohistochemical staining, Western blotting, and ROS detection, we found that catalpol significantly reduces oxidative stress and apoptosis and increases angiogenesis. Hematoxylin and eosin (H&E) staining and laser Doppler images further clarified the enhancement of angiogenesis after catalpol treatment. The impact of catalpol in flap was switched by using 3-methyladenine (3MA), proving the important role of autophagy in curative effect of catalpol on skin flaps. Importantly, the ability of catalpol to regulate autophagy is mediated by the activation of sirtuin 1 (SIRT1) based on its high affinity for SIRT1. Our findings revealed that catalpol improved the viability of random skin flaps by activating SIRT1-mediated autophagy pathway.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3