Secure and Scalable Healthcare Data Transmission in IoT Based on Optimized Routing Protocols for Mobile Computing Applications

Author:

Refaee Eshrag1ORCID,Parveen Shabana2,Begum Khan Mohamed Jarina1,Parveen Fatima3,Raja M. Chithik4ORCID,Gupta Shashi Kant5,Krishnan Santhosh6ORCID

Affiliation:

1. Information Technology & Security, College of Computer Science and Information Technology, Jazan University, Saudi Arabia

2. Computer Science, Jazan University, Jazan, Saudi Arabia

3. Tech Mahindra, India

4. Information Technology, University of Technology and Applied Sciences-Salalah, Salalah, Oman

5. Computer Science and Engineering, Integral University, Lucknow, India

6. Department of Mechatronics Engineering, Wollo University, Kombolcha Institute of Technology, Kombolcha, Post Box No: 208, Ethiopia

Abstract

The Internet of Things (IoT) has impacted various aspects of life, but its profound effects on the health sector are particularly striking because of its cutting-edge nature. Mobile computing characteristics enable IoT to play a more important role when used with mobile computing. A significant part of the benefits of IoT in healthcare can be attributed to mobile health, which is greatly enhanced by mobile computing. Wearables transmit large amounts of data to IoT devices through sensors, actuators, and transceivers. Threats, attacks, and vulnerabilities abound for data on the Internet of Things. Therefore, addressing IoT-related security, privacy, and vulnerability issues call for a robust security solution. This paper proposes a secure and scalable healthcare data transmission framework in IoT based on an optimized routing protocol. Initially, the health data is collected from various IoT devices like wearable devices and sensors. The raw data is preprocessed via data cleaning and data reduction techniques. K-nearest neighbor (KNN) imputation is performed and principal component analysis (PCA) is employed for dimension reduction of the data. Utilizing modified local binary patterns (MLBP), the features are extracted from the preprocessed data. By combining the fuzzy dynamic trust-based RPL algorithm with the butter ant optimization (BAO) algorithm for low-power and lossy networks, the proposed fuzzy dynamic trust-based RPL (FDT-RPL) protocol improves the overall security of data transmission. The algorithm has been implemented for a smart healthcare system, and the performance is analyzed by comparing it with traditional approaches. The proposed routing protocol provided a secure and scalable healthcare data transmission.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3