Harris Hawk Optimization Combined with Differential Evolution for the Estimation of Solar Cell Parameters

Author:

Ndi Francelin Edgar1ORCID,Perabi Steve Ngoffe1,Ndjakomo Salome Essiane1,Abessolo Gregoire Ondoua2

Affiliation:

1. Technology and Applied Sciences Laboratory, University of Douala, Douala, Cameroon

2. Ecosystems and Fisheries Resources Laboratory-University of Douala, Cameroon

Abstract

In a dynamic shift, lowering reliance on fossil fuels and greenhouse gas emissions is now a top goal. This is accomplished through expanding the usage of renewable energy. Solar photovoltaic (PV) energy is now more than ever at the heart of many cities’ policies. Improving the efficiency of PV systems is a current research goal. The key challenge in rectifying complex systems is to establish a model that correctly reproduces the system’s dynamic behaviour. The goal function and optimization method utilised are indicative of the model parameters’ correctness. This paper presents a mix of differential evolution (DE) and Harris hawk optimisation (HHO). The suggested technique estimates the parameter vector that minimises the objective function to the greatest extent possible. This is for the many diode models. The procedure is validated using experimental data acquired at a known temperature and irradiance. The root mean square error (RMSE) is used to assess the method’s effectiveness. A comparison is made between the objective function of the hybrid approach presented in this publication and previously authorised methods. The strategy utilised is as straightforward as many others stated in our predecessors’ publications, and this applies to both models analysed. When compared to the simple version of the Harris hawk optimizer, this approach allows for more experimentation.

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

Reference36 articles.

1. Global energy outlook 2019: the next generation of energy;R. Newell;Resources for the Future,2019

2. Pollutions Radioactives de Fukushima & Contaminations Brèves un an après;Y. Lautre,2012

3. Maximum likelihood parameters estimation of single-diode model of photovoltaic generator

4. Wind and solar power in the united states: status and prospects

5. Demand side management of photovoltaic-battery hybrid system

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3