Algorithm Design of Port Cargo Throughput Forecast Based on the ES-Markov Model

Author:

Yi Yan1ORCID,Seyed Sadr Seyed Taha2ORCID

Affiliation:

1. School of International Cruise and Yacht, Guangzhou Maritime University, Guangdong, Guangzhou 510725, China

2. Department of Industrial Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran

Abstract

At present, the existing prediction algorithm of a port cargo throughput neglects the correction of the initial value of the cargo series data model, which leads to a large error in a port cargo throughput prediction. Therefore, a prediction algorithm of a port cargo throughput based on the ES-Markov model is designed. A decompose function is used to decompose the time series of a port cargo throughput, and the trend elements of a port cargo throughput are divided into long-term trend, seasonal trend, fluctuation trend, and irregular trend. In this study, the ES-Markov model is introduced, and the initial prediction is obtained by using the cubic exponential smoothing method, and the state transition matrix is obtained by the Markov principle. Based on the results of the time-series analysis and the ES-Markov model, the prediction algorithm of a port cargo throughput is designed. In the experimental design, the Elman neural network is used to construct an experimental sample data model. The monthly cargo throughput data of a certain port for eight months from May 2020 to December 2020 are collected and sorted according to the time series. The experimental results show that the prediction results of the proposed algorithm are closer to the actual value and the fluctuation of the prediction results is less than that of the reference.

Funder

Educational Science in Guangdong Province

Publisher

Hindawi Limited

Subject

Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3